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Abstract— The more complex the problem, the more com-
plex the system necessary for solving this problem. For
very complex problems, it is no longer possible to design
the corresponding system on a single resolution level, it be-
comes necessary to have multiresolutional systems. When
analyzing such systems — e.g., when estimating their per-
formance and/or their intelligence — it is reasonable to use
the multiresolutional character of these systems: first, we
analyze the system on the low-resolution level, and then we
sharpen the results of the low-resolution analysis by con-
sidering higher-resolution representations of the analyzed
system. The analysis of the low-resolution level provides us
with an approximate value of the desired performance char-
acteristic. In order to make a definite conclusion, we need
to know the accuracy of this approximation. In this paper,
we describe interval mathematics — a methodology for es-
timating such accuracy. The resulting interval approach is
also extremely important for tessellating the space of search
when searching for optimal control. We overview the corre-
sponding theoretical results, and present several case stud-
ies.

I. MULTIRESOLUTIONAL METHODS ARE NECESSARY: A
BRIEF REMINDER

The more complex the problem, the more complex the
system necessary for solving this problem. For very com-
plex problems, it is no longer possible to design the cor-
responding system on a single resolution level, it becomes
necessary to have multiresolutional systems.

The methodology of multiresolutional search for the op-
timum solution of a control problem was first presented by
A. Meystel in [40], [41]. These papers contributed to the
broad interest in and dissemination of the multiresolutional
approach to solving problems of the areas of intelligent con-
trol and intelligent systems.

Many algorithms based on this methodology were de-
veloped since then. The successful practical applications
of these algorithms shows that multiresolutional approach
are indeed necessary.

This empirical conclusion has been supported by many
mathematical results; let us name a few recent ones:

« It has been proven that for general complex (NP-hard)
problems, i.e., problems, for which no general feasible algo-
rithm is possible, there always exists an appropriate “gran-
ulation” after which the problem becomes easy to solve.
The fact that the problem is NP-hard means that there is
no general algorithm for automatically finding such a gran-
ulation, this granulation requires an expert familiar with
the particular problem that we are trying to solve [11].

« For noisy images I(z) in which we do not know the ex-
act statistical characteristics of the noise, only the upper
bound on the noise, the optimal image processing requires
representing this image as a linear combination of so-called
Haar wavelets e;(x), i.e., functions which only take values
1 or 0. Such a wavelet representation is a known particular
case of a multiresolutional representation [5], [6].

¢ In particular, when detecting a known pattern in a given
image, it is provably better to use lower-resolution type
techniques that look for the whole pattern as opposed to
higher-resolution techniques which look for pieces of this
pattern and then try to match found pieces together [64].
 Similarly to noisy images, for signal multiplexing under
noise, the use of Walsh functions (similar to Haar wavelets)
can be proven to be the optimal choice [2].

¢ In general, in function interpolation, clustering tech-
niques — in which we combine the values into clusters before
extrapolation — turn out to be optimal [34]. Such an inter-
polation is very useful in intelligent control, when we train
a system by providing it with examples of control values
used by expert human controllers in different situations.

o In general, in intelligent control, hierarchical fuzzy con-
trol is better in the sense that it requires fewer rules to
describe the same quality control [35], [36], [77].

« Finally, it can be shown that for many systems, the opti-
mal control is of “bang-bang” type, when there are finitely
many preferred control values (or preferred fixed control
trajectories), and the optimal control consists of optimally
switching between these values (trajectories). This general
result explains different empirical phenomena ranging from
the empirical fact of discrete speed levels in traffic control
to the phenomenon of sleep when it seems to be biologi-
cally optimal to always switch between several fixed levels
of activity [29].

II. INTERVAL MATHEMATICS: A METHODOLOGY FOR
VALIDATED ANALYSIS OF MULTIRESOLUTIONAL
SYSTEMS

A. Validated Analysis of Multiresolutional Systems Natu-
rally Leads to Interval Computations

When analyzing multiresolutional systems — e.g., when
estimating their performance and/or their intelligence — it
is reasonable to use the multiresolutional character of these
systems: first, we analyze the system on the low-resolution
level, and then we sharpen the results of the low-resolution



analysis by considering higher-resolution representations of
the analyzed system.

For example, instead of the original image with its nu-
merous pixel-by-pixel brightness values, we consider a low-
resolution image in which there is a small finite number of
zones, and each zone is characterized by a single brightness
value. After analyzing this image, we increase resolution,
thus adding more details (more zones), etc.

The analysis of the low-resolution level provides us with
an approximate value of the desired performance charac-
teristic. In order to make a definite conclusion, we need
to know the accuracy of this approximation. How can we
estimate this accuracy?

In order to solve this problem, let us reformulate it in
general mathematical terms. Instead of considering the
exact system, we consider its approzrimation, analyze this
approximation, and then we want to make a conclusion
about the original system based on this analysis. The orig-
inal system is characterized by the values of different pa-
rameters Iy, ...,T,; €.g., for the image, these parameters
are the brightness values at different pixels. We want to es-
timate some characteristic ¢ = f(x1, - .., x,) of the original
system.

A low-resolution approximation can be usually described
by fewer parameters ys, .. ., Ym, m <K n; e.g., for the image,
these parameters are the brightnesses of different zones.
FEach parameter x; is approximated by one of the new pa-
rameters y;; let us denote the corresponding parameter by
Yji)- When each z; is exactly equal to the corresponding
value y;, we get a simplified expression for ¢ which only

depends on m < m values: § = f(y1,...,Yn). In real-
ity, the values z; are somewhat different from y;, and as
a result, the estimate ¢ is different from the actual value
q of the desired characteristic. How can we estimate the
corresponding approximation error g — g7

In addition to the approximate model itself, we usually
know, for each j, the upper bound on the error with which
the value y; approximates the corresponding values z;. In
other words, we know that the actual value of z; belongs
to the interval y; = [y; — Aj,y; + A;]. Since each value z;
belongs to the interval y;(; , the actual value of the desired
characteristic belongs to the range

def
q= f(yi(l)a"'3Yi(n)) = {f(@1,-.,zn) |2 € Yj(z')}

of the function f on these intervals. Thus, in order to
estimate the accuracy of the lower-resolution estimate g,
we can estimate the above range.

The problem of estimating the range of the function
f(z1,...,2,) when we know the intervals x; of possible
values of x; is a known problem in areas where the inputs
are not known precisely, be it numerical methods or data
processing. This problem is called the problem of interval
computations, and methods for solving this problem are
called interval mathematics [1], [16], [17], [19], [20], [44],
[75].

B. Interval Computations are Difficult

In general, the interval computation problem is NP-hard
even for quadratic functions f(z1,...,z,); see, e.g., [26].
In plain English, this means that it is highly unprovable
that we will be able to find a general feasible algorithm
that computes the exact range for all functions f and all
intervals x; in reasonable time. Since we cannot compute
the exact range, what can we do instead?

We wanted to compute the exact range q because we
wanted to get an interval that is guaranteed to contain the
desired value ¢, and the range definitely contains this value.
If we cannot compute the eract range in reasonable time,
we can compute the approximate interval Q for the range.
The only way to guarantee that the new interval still con-
tains ¢ is to make sure that this new intervals contains the
entire range q C Q, i.e., that this interval is an enclosure
for the desired range.

In these terms, interval mathematics is an art of comput-
ing good narrow enclosures for the range of a given function
f(z1,...,2,) on given intervals x1,...,X,.

C. Methods of Interval Mathematics: A Very Brief Intro-
duction

Interval mathematics started, in the 1950s, with the ob-
servation that for simple arithmetic operations f(z1,x2) =
1+ X2, 1 — T2, etc., the range can be computed explicitly;

e.g.:

[e7, 2]+ [25, 23] = [z + 25,21 +25);

ot 2l ] = [e2, 23] = [oy — 2,2 — a3 );
[$177$1+] [.’E;,.Z’;] = [mln(m‘f Ty, Ty 1E2+,.CL'1+ $57$1+ $2+)7
— o= o= gt ot e— ot at
max(x] -5 ,&] T3, Ty ,x] -x3)]

The corresponding expressions are called formulas of inter-
val arithmetic.

It turns out that we can use these expressions to get rea-
sonable enclosures for arbitrary functions f. Indeed, when
the computer computes the function f, it parses the func-
tion, i.e., it represents the computation as a sequence of
elementary arithmetic operations. It can proven, by in-
duction, that if we start with intervals and replace each
arithmetic operation with the corresponding operation of
interval arithmetic, at the end, we get an enclosure for f.
For example, if f(z) = z-(1 —z), represent f as a sequence
of two elementary operations:

e 7 :=1— 1z (r denotes the 1st intermediate result);

o Yi=x-T.

In the interval version, perform the following computations:
er:=1-x;

e Yy =X-T.

In particular, when x = [0, 1], compute the intervals r :=
[1,1] —[0,1] = [0,1], and

y :=[0,1]-[0,1] = [min(0-0,0-1,1-0,1- 1),
max(0-0,0-1,1-0,1-1)] = [0,1].

The interval [0, 1] is indeed an enclosure of the actual range
[0,0.25].



D. Modern Methods of Interval Mathematics and Their
Potential Use in Tessellating the Search Space

D.1 Methods Based on Mean Value Theorem

The enclosure obtained by using the above simple idea
is often too wide. One of the main objectives of interval
computations is to make this enclosure narrower. One way
to do that is to use the mean value theorem, according
to which f(z) = f(zo) + f'(§) - (x — z¢) for some value &
between zg and x. Thus, if we take, as xg, the midpoint
of the interval x of width w, we will have |z — z¢| < w/2,
£'(€) € £'(x), and thus, £(x) C f(wo) + f'(X)-[~w/2,w/2].
If we do not know the exact range f'(x), we can use the
enclosure for this range. Similar formulas can be easily
written for the case of several variables.

D.2 Methods Based on Division into Subboxes and Their
Relation with Multiresolutional Approach

In many cases, the above idea leads to a reasonable en-
closure. If the enclosure is still too wide, we can divide the
original box x; X ... X x,, into sub-boxes, compute the en-
closure for each of these subboxes, and then take the union
of the resulting enclosures.

It is worth mentioning that this idea is completely
in line with the general multiresolutional approach: in-
stead of considering the individual values of the function
f(z1,...,2,) for all possible inputs z1,...,z,, we divide
the range of this function into a small number of zones, and
consider the enclosure for each zone. In multiresolutional
terms, we are thus considering a low-resolution approxima-
tion to the original function. If we want better results, we
have to consider smaller zones, i.e., we have to consider
higher-resolution approximations.

In other words, not only the formulation of the main
problem of interval mathematics naturally comes from mul-
tiresolutional approach, but also the methods of interval
mathematics are completely in line with this approach.

D.3 Interval Mathematics as a Method for Tessellating
Search Space

The resulting interval approach is also extremely impor-
tant for tessellating the space of search when searching for
optimal control [19], [20]. The simplest way of using inter-
val computations in to locate a maximum of the objective
function f(z) is as follows:

First, we compute the values of f(z) in several points

¢ .. z®); we then now that max f(z) > M def

max(f(z(?)). Then, we divide the original range into sev-
eral zones Z;, use interval computations to get an enclosure
F; = [F,, F;*] of the range of f(z) on each zone Z;, and
dismiss the zones for which FZ-Jr < M —because they cannot
contain the global maxima.

Then, we subdivide the remaining zones into sub-zones,
and repeat this procedure again — until we locate the global
maxima. This idea leads to a reasonably efficient algo-
rithms for global optimization, with can be further en-
hanced by using interval versions of gradient-based opti-
mization methods.

Numerous similar methods exist for computing enclo-
sures and optimization. Most of these methods are imple-
mented in easily available software packages; see, e.g., [19],
[20], [75].

D.4 Conclusion: Interval Mathematics Is Very Useful for
Multiresolutional Approach

Based on the above, we can conclude that interval math-
ematics is a good candidate for being “the” mathematics of
multiresolutional systems.

D.5 We Will Present Examples of Applying Interval Com-
putations

In the following sections, we will describe two applica-
tions of interval mathematics in some detail. Before we go
into the descriptions, we should mention that the above is
the description of a “vanilla” situation. In many real-life
cases, the situation is even more complex, because, in addi-
tion to a quantitative conclusion (about the value of some
quantity ¢), we need to make a qualitative conclusion: e.g.,
in the following example, a conclusion on whether a plate
has a hidden fault or not.

E. Case Study: Non-Destructive Testing

This case study is described, in detail, in [65], [72], [73],
[74].

In many areas, e.g., in aerospace industry, in medicine,
it is desirable to detect mechanical faults without damag-
ing or reassembling the original system. For testing, we
send a signal and measure the resulting signal. The input
signal can be described by its intensity ri,...,7, at dif-
ferent moments of time. The intensities sy, ..., s,, of the
resulting signal depend on r;: s; = f;j(r1,...,r,), where
the functions f; depend on the tested structure.

Usually, we do not know the exact analytical expression
for the dependency f;, so we can use the fact that an arbi-
trary continuous function can be approximated by a poly-
nomial (of a sufficiently large order). Thus, we can take
a structure, try a general linear dependency first, then, if
necessary, general quadratic, etc., until we find the depen-
dency that fits the desired data.

If a structure has no faults, then the surface is usually
smooth. As a result, the dependency f; is also smooth;
we can expand it in Taylor series. Since we are sending
relatively weak signals r; (strong signals can damage the
plane), we can neglect quadratic terms and only consider
linear terms in these series; thus, the dependency will be
linear.

A fault is, usually, a violation of smoothness (e.g., a
crack). Thus, if there is a fault, the structure stops be-
ing smooth; hence, the function f; stops being smooth,
and therefore, linear terms are no longer sufficient. Thus,
in the absence of fault, the dependence is linear, but with
the faults, the dependence is non-linear. So, we can detect
the fault by checking whether the dependency between s;
and r; is linear. So, we send several different inputs, mea-
sure the values rz(k) and sg-k) corresponding to these inputs,
and check whether the dependence is linear. In this case,



the values rgk) and sg-k) are the inputs x1, ..., %,, but the

desired ¢ is a qualitative (yes-no) variable: we simply want
to know whether there is a fault or not. If there is a fault,
then we would also like to make a quantitative conclusion
of its size, location, etc., but the most important part of
the analysis is to check whether there is any fault at all.

If the measurements were ideal, all we had to do was to
check whether there are values aj; for which, for all j and
for all measurements k, we have:

ajo + aj1 -r%k) + ...+ aj, -rg“) = sg.k).

Solvability of a system of linear equations is easy to check.

In reality, the situation is more complicated. Measure-
ment are usually imprecise: the result Z of measuring the
actual value z is somewhat different from the actual value
z. In many real-life situations, we do not know the proba-
bilities of different values of measurement error Az = 7 —x,
we only know the upper bound A of the corresponding mea-
surement error. As a result, the only information that we
have about the actual value x of the measured quantity
is that it belongs to the interval x = [z — A,z + A]. So,

(k) (k)

in practice, instead of the exact values of r;”’ and s;
(k) (k)

i J
we have intervals r;"”’ and s ; of possible values of these
quantities. The question becomes: are these intervals con-
sistent with the linearity, i.e., are there values rgk) € rgk)
and sg-k) € sg.k) for which, for some values a;;, the above
linearity formulas hold.

In general, the solvability of the corresponding system of
interval linear equations is an NP-hard problem [26], but
for some cases, efficient algorithms have been developed.
For example, when we have only one (non-negative) in-
put and only one output, with non-intersecting intervals
r) < r® < ... the solvability of the corresponding sys-
tem of linear equations can be proven to be equivalent to
the following inequality:

sO— — gk)+ o s+ gk

S R U R
We tested this method on the dependence of the energy E
of the ultrasound response on the voltage V that causes
the original ultrasound signal. The results show that non-
linearity is indeed an indication of a fault:
o For faultless plates, the above inequality is indeed true,
meaning that the measurement results are consistent with
linearity.
e For plates with faults, this inequality is not satisfied,
meaning that the dependence is non-linear.

F. Case Study: Reliable Sub-Division of Geological Areas

This case study is described, in detail, in [7], [8].

In geophysics, appropriate subdivision of an area into
segments is extremely important, because it enables us to
extrapolate the results obtained in some locations within
the segment (where extensive research was done) to other
locations within the same segment, and thus, get a good
understanding of the locations which weren’t that thor-
oughly analyzed. The subdivision of a geological zone into

segments is often a controversial issue, with different evi-
dence and different experts’ intuition supporting different
subdivisions.

For example, in our area — Rio Grande rift zone — there
is some geochemical evidence that this zone is divided into
three segments [39]:

o the southern segment which is located, approximately,
between the latitudes y = 29° and y = 34°;

o the central segment — from y = 34.5° to y = 38°; and

o the northern segment — from y = 38° to y = 41°.
However, in the viewpoint of many researchers, this evi-
dence is not yet sufficiently convincing.

It is therefore desirable to develop new techniques for
zone sub-division, techniques which would be in the least
possible way dependent on the (subjective) expert opin-
ion and would, thus, be maximally reliable. To make this
conclusion more reliable, we use, instead of the more rare
geological samples, a more abundant topographical informa-
tion (this information, e.g., comes from satellite photos).
We can characterize each part of the divided zone by its
topography.

In topographical analysis, we face a new problem: of
too much data, most of which is geophysically irrelevant.
To eliminate some of this irrelevant data, we can use the
Fourier transform; indeed, it is known that while (at least
some) absolute values of the map (forming a so-called spec-
trum) are geophysically meaningful, the phases usually are
random and can be therefore ignored. So, we should only
use the spectrum.

Since we are interested only in the large-scale classifica-
tion, it makes sense to only use the spectrum values corre-
sponding to relatively large spatial wavelengths, i.e., wave-
lengths L for which L > Ly for some appropriate value L.
In particular, for the sub-division of the Rio Grande rift, it
makes sense to use only wavelengths of Lo = 1000 km or
larger.

Also, for the Rio Grande Rift, we are interested in the
classification of horizontal zones, so it makes sense to di-
vide the Rio Grande Rift into 1° zones [y~,y"] (with y
from y~ =30 to yT™ =31, fromy~ =31 toyt =32, ...,
from y~ = 40 to yT = 41). For each of these zones, we take
the topographic data, i.e., the height h(z,y) described as a
function of longitude z and latitude y, compute the Fourier
transform H(w,y) with respect to x, combine all the spec-
tral values which correspond to large wavelength (i.e., for
which w < 1/Ly), and compute the resulting spectral value

yt 1/Lo
S(y™) =/ / |H(w,y)|? dw dy.
y=y~ Jw=0

Since we are interested in comparing the spectral values
S(y) corresponding to different latitudes y, so we are not
interested in the absolute values of S(y), only in relative
values. Thus, to simplify the data, we can normalize them
by, e.g., dividing each value S(y~) by the largest Smax of
these values. In particular, for the Rio Grande rift, the
resulting values of y~ = y1,¥2,... and s; = S(¥;)/Smax are
as follows:



TABLE 1

| i |20 |30 | 31| 32|33 34|

| s 028024021 016]0.20]0.29 |

| 35 | 36 | 37| 38 | 30 | 40 | 41 |

| 031 0.35] 0.46 | 1.00 | 0.80 | 0.96 | 0.74 |

Based only on these spectral values s;, we will try to classify
locations into several clusters (“segments”).

From the geophysical viewpoint, the desired zones cor-
respond to “monotonicity regions”: in the first zone, the
values s; are (approximately) decreasing, in the next zone,
they are (approximately) increasing, etc. So, we must
look for the monotonicity regions of the (unknown) func-
tion s(y).

The problem is that the values s; are only approximately
known, so we cannot simply compare the values to de-
termine whether a function increases or decreases. The
heights are measured pretty accurately, so the only er-
rors in the values s; come from discretization. In other
words, we would like to know the values of the function
s(y) = S(y)/Smax for all y, but we only know the values
s1 =8(1), --., Sn = $(yn) of this function for the points
Y1,---,Yn- For each y which is different from y;, it is rea-
sonable to estimate s(y) as the value s; = s(y;) at the point
y; which is the closest to y (and, ideally, which belongs to
the same segment as y;). For each point y;, what is the
largest possible error A; of the corresponding approxima-
tion?

When y > y;, the point y; is still the closest until we
reach the midpoint ymia = (¥; + yi+1)/2 between y; and
Yi+1- It is reasonable to assume that the largest possible
approximation error |s(y) — s;| for such points is attained
when the distance between y and y; is the largest, i.e., when
y is this midpoint; in this case, the approximation error is
equal to |$(Yymid) — Sil-

If the points y; and y;; belong to the same segment,
then the dependence of s(y) on y should be reasonably
smooth for y € [y;,4it+1]- Therefore, on a narrow in-
terval [y;,yi+1], we can, with reasonable accuracy, ignore
quadratic and higher terms in the expansion of s(y; + Ay)
and thus, approximate s(y) by a linear function. For a
linear function s(y), the difference s(ymiq) — s(y:) is equal
to the half of the difference s(yit+1) — s(yi) = Sit1 — 84
thus, for y > y;, the approximation error is bounded by
0.5- |S,’+1 — Sil-

If the points y; and y;41 belong to different seg-
ments, then the dependence s(y) should exhibit some non-
smoothness, and it is reasonable to expect that the dif-
ference |s;+1 — s;| is much higher than the approximation
€rror.

In both cases, the approximation error is bounded by

0.5- |3i+1 - Sz'|.

Similarly, for y < y;, the approximation error is bounded
by 0.5 - |s; — s;—1] if the points y; and y;_1 belong to the
same segment, and is much smaller if they don’t. In both
cases, the approximation error is bounded by

0.5 - |Sz - Si,1|.

We have two bounds on the approximation error and we
can therefore conclude that the approximation error cannot
exceed the smallest A; of these two bounds, i.e., the value

Az’ =0.5- min(|s,- - 81'1', |Sz'+1 - 8,|)

As aresult, instead of the ezact values s;, for each i, we get
the interval s; = [s],s]] of possible values of s(y), where
s; =8 —A; and sf = s; + A;. In particular, for the Rio

Grande rift, we get:
s1 = [0.26,0.30], s = [0.225,0.255],s3 = [0.195, 0.225],
s4 = [0.14,0.18],s5 = [0.18,0.22],s6 = [0.28,0.30],
s7 = [0.30,0.32],sg = [0.33,0.37],s9 = [0.405,0.515],
s10 = [0.80,1.10],s1; = [0.72,0.88],s12 = [0.88,1.04],
s13 = [0.63,0.85].

We want to find regions of uncertainty of a function s(y),
but we do not know the exact form of this function; all we
know is that for every i, s(y;) € s; for known intervals s;.
How can we find the monotonicity regions in the situation
with such interval uncertainty? Of course, since we only
know the values of the function s(y) in finitely many points
Yy;, this function can have as many monotonicity regions be-
tween y; and y;+1 as possible. What we are interested in
is funding the subdivision into monotonicity regions which
can be deduced from the data. The first natural question is:
can we explain the data by assuming that the dependence
s(y) is monotonic? If not, then we can ask for the possibil-
ity of having a function s(y) with exactly two monotonicity
regions:

o if such a function is possible, then we are interested in
possible locations of such regions;

o if such a function is not possible, then we will try to find
a function s(y) which is consisted with our interval data
and which has three monotonicity regions, etc.

This problem was first formalized and solved in [68], [69],
where we developed a linear-time algorithm for solving this
problem. By applying this algorithm, we find three mono-
tonicity regions: [29,34], [31,41], and [37,41] — in good
accordance with the geochemical data from [39].

G. Other Applications: A Brief Overview

Other successful applications of interval techniques in-
clude:
o telemanipulation [9], [25], [65];
« robot navigation [65];
« analysis of multi-spectral satellite images [63], [65].
Since a fuzzy set can be naturally represented as a nested
family of intervals (corresponding to different levels of cer-
tainty), methods of fuzzy data processing actively use inter-
val computations and be considered as natural applications
of interval techniques [22], [50], [54], [65].



III. MuLTI-D GENERALIZATIONS OF INTERVAL
MATHEMATICS AND SYMMETRY APPROACH

A. General Idea

In addition to the upper bound on the approximation er-
ror for each quantity z;, we often have an additional infor-
mation. For example, in some cases, in addition to the up-
per bounds A; for the differences T; — x;, we also know the
upper bound on their distance between the vectors T and =,
i.e., the upper bound on \/(Z1 — 21)? + ...+ (Tn — )2
In this case, we know that the actual values of zy,...,x,
belongs to the intersection of a box x3 X...Xxx, and a ball.
We may have more complex shapes. Processing complex
shapes is computationally difficult (see, e.g., [32]), so we
must find good approximations for such shapes. Ideally,
we should find approximations which are optimal in some
reasonable sense.

A similar problem of finding the optimal shapes arises
in the selection of “clusters” (zones) corresponding to the
low-resolution approximation. Here also, it is desirable to
find the optimal zones.

Let us show, on the example of selecting zones on the
plane, how this problem can be solved (a more general case
is described in [47]).

Of course, the more parameters we allow, the better the
approximation. So, the question can be reformulated as
follows: for a given number of parameters (i.e., for a given
dimension of approximating family), which is the best fam-
ily?

For simplicity, we will restrict ourselves to families of
sets have analytical (or piece-wise analytical) boundaries,
i.e., boundaries that can be described by an equation
F(z,y) = 0 for some analytical function F(z,y) = a +
br + cy + dz? + exy + fy? + ... Since we are interested
in finite-dimensional families of sets, it is natural to con-
sider finite-dimensional families of functions, i.e., families
of the type {Cy - Fi(z,y) + ...+ Cyq- Fy(x,y)}, where F;(2)
are given analytical functions, and C1, ..., Cy are arbitrary
(real) constants. So, the question is: which of such families
is the best?

When we say “the best”, we mean that on the set of all
such families, there must be a relation > describing which
family is better or equal in quality. This relation must be
transitive (if A is better than B, and B is better than C,
then A is better than C). This relation is not necessarily
asymmetric, because we can have two approximating fam-
ilies of the same quality. However, we would like to require
that this relation be final in the sense that it should define
a unique best family A, (i-e., the unique family for which
VB (Aopt > B). Indeed:

e If none of the families is the best, then this criterion is
of no use, so there should be at least one optimal family.

o If several different families are equally best, then we can
use this ambiguity to optimize something else: e.g., if we
have two families with the same approximating quality,
then we choose the one which is easier to compute. As
a result, the original criterion was not final: we get a new
criterion (A >,ew B if either A gives a better approxima-

tion, or if A ~gq B and A is easier to compute), for which
the class of optimal families is narrower. We can repeat
this procedure until we get a final criterion for which there
is only one optimal family.

It is reasonable to require that the relation A > B should
be invariance relative to natural geometric symmetries, i.e.,
shift-, rotation- and scale-invariant.

Now, we are ready for the formal definitions.

Definition 1. Let d > 0 be an integer. By a d-dimensional
family, we mean a family A of all functions of the type
{C1-Fi(z,y) + ...+ Cq - Fy(z,y)}, where F;(z) are given
analytical functions, and Cy,...,Cy are arbitrary (real)
constants. We say that a set is defined by this family
A if its border consists of pieces described by equations
F(z,y) =0, with F € A.

Definition 2. By an optimality criterion, we mean a tran-
sitive relation > on the set of all d-dimensional families. We
say that a criterion is final if there exists one and only one
optimal family, i.e., a family Aqpy for which VB (Agpy > B).
We say that a criterion > is shift- (corr., rotation- and scale-
invariant) if for every two families A and B, A > B implies
TA > TB, where TA is a shift (rotation, scaling) of the
family A.

Theorem [33], [71]. (d < 4) Let > be a final optimality
criterion which is shift-, rotation-, and scale-invariant, and
let Agpe be the corresponding optimal family. Then, the
border of every set defined by this family Aop consists of
straight line intervals and circular arcs.

For d = 5 and d = 6, we also get hyperbolas, parabolas,
and ellipses [55].

A similar symmetry-based optimization technique can be
used to find the optimal technique for subdividing boxes in
interval range estimation and interval optimization; see,
e.g., [21].

B. Case Studies: Brief Overview
B.1 Analyzing Cotton Images

The above approach has been very helpful in the auto-
matic analysis of cotton images [55], [61]. Specifically, the
above symmetry-based approach helps in classifying trash
(bark, leaves, etc.) in ginned cotton and in classifying in-
sects by their shapes. The symmetry approach enables us
not only to find the optimal shapes, but also to find the op-
timal geometric characteristics for distinguishing between
different shapes and different sizes of the same size. The
same symmetry approach leads to the conclusion that the
optimal approximations to sizes form a geometric progres-
sion; this conclusion is in good accordance with the actual
insect sizes.

B.2 Half-Orders of Magnitude

A similar geometric progression result explains why,
when people make crude estimates, they feel comfortable
choosing between alternatives which differ by a half-order
of magnitude (e.g., were there 100, 300, or 1,000 people
in the crowd), and less comfortable making a choice on a



more detailed scale, with finer granules, or on a coarser
scale (like 100 or 1,000) [18]. This empirical fact is diffi-
cult to explain within standard uncertainty formalisms like
fuzzy logic; see, e.g., [31].

B.3 Analyzing Geospatial Data II

Computer processing can drastically improve the quality
of an image and the reliability and accuracy of a spatial
database. A large image (database) does not easily fit into
the computer memory, so we process it by downloading
pieces of the image. Each downloading takes a lot of time,
S0, to speed up the entire processing, we must use as few
pieces as possible.

Many algorithms for processing images and spatial
databases consist of comparing the value at a certain spa-
tial location with values at nearby locations. For such algo-
rithms, we must select (possibly overlapping) sub-images in
such a way that for each point, its neighborhood (of given
radius) belongs to a single sub-image. In [3], we formulate
the corresponding optimization problem in precise terms,
and show (in good accordance with the above optimization
result) that the optimal sub-images should be bounded by
straight lines or circular arcs.

B.4 Analyzing Geospatial Data III

Geospatial databases often contain erroneous measure-
ments. For some such databases such as gravity databases,
the known methods of detecting erroneous measurements
— based on regression analysis — do not work well. As a
result, to clean such databases, experts use manual meth-
ods which are very time-consuming. In [70], we propose a
(natural) multiresolutional (localized) version of regression
analysis as a technique for automatic cleaning. Specifically,
we subdivide the original image into zones, and apply re-
gression analysis separately within each zone (on the high-
resolution level) and between different zones (on a low-
resolution level).

In this physical problem, natural requirements lead to
the following optimality criterion for selecting zones: min-
imizing the zone’s diameter (that describes the variance
within the zone) under given area (that describes the num-
ber of measurements within the zones). The efficiency of
the resulting optimal zones is shown on the example of the
gravity database, where our algorithm not only detected all
erroneous measurements found manually by the experts;,
but it also uncovered several suspicious points that the ex-
perts overlooked.

B.5 Non-Destructive Testing IT

A standard way of detecting faults is to measure a certain
quantity = at different points on the analyzed plate, and
to classify the point as faulty is when the value x of the
measured quantity at this point differs from the average a
of measurement results by more than two or three o.

Based on the results of measuring a single quantity (e.g.,
ultrasonic signal), we often miss some faults. To improve
the quality of fault detection, it is necessary to measure sev-
eral different quantities, and combine the results of these

measurements. A natural idea is to classify the point as
faulty is one of the measurement detects a fault. How-
ever, one of the measurements may be erroneous, we would
rather consider a point a fault location if at least one other
measured quantity at this or nearby point indicates a fault.

In other words, to improve the quality of fault detection,
we replace the original point-by-point analysis by a new
method which involves high-resolution clustering. When
the corresponding neighborhoods are selected in an optimal
way, this replacement indeed improves the quality of fault
detection [58], [59].

A further improvement in fault detections comes when
we treat the physically different points near the plate’s edge
as a different zone, and classify a point as faulty only if the
corresponding value z differs from the average a, within
this zone by more than two or three standard deviations
0, measured within this zone z. In other words, a fur-
ther improvement in fault detection comes when we sup-
plement the above high-resolution technique by additional
low-resolution subdivision into zones.

B.6 Why Two Sigma

In the above example, and in statistics in general, a two-
sigma criterion is used. The normal justification for this
criterion is that for & ~ 2, the dependence of the probabil-
ity to be outside the k- o interval [a— k- 0,a + k- o] on the
(unknown) probability distribution is the smallest. In [52],
[53], we provide a theoretical explanation for this empirical
fact, and thus, for the “2¢” criterion.

For that, we take into consideration the fact that an arbi-
trary probability distribution can be represented as f(n),
where 7 is normally distributed, so the choice of a dis-
tribution is equivalent to the choice of a function f(z).
An symmetry-based approach similar to the one presented
above leads to the family f(z) = z%, and for this family,
in the vicinity of normal distribution (when a = 1), the
smallest dependence on « is indeed attained for k = 2.

B.7 Acupuncture Points

The above approach to describing optimal shapes can
be successfully applied to finding a good approximation
for the location of the acupuncture points, i.e., points in
which acupuncture treatment is the most efficient [46].

B.8 Towards Optimal Image Compression

In the above image processing problems, we process the
image as it appears. In many situations, we must store the
image for future use, and there is not enough storage space
to store all the images, so we need to compress the image.
In other situations, there is not enough bandwidth to send
the entire image, so again, compression is needed.

It is proven that finding the optimal compression of a
given image, be it an optimal lossless compression or an
optimal lossy compression with a given bound on allowable
loss of information, is a computationally difficult problem
[66]. Since we cannot find the optimal compression, a nat-
ural idea is to consider several compression techniques and
find the best one. The problem is to quantify what “the



best” means, especially in the situations when we may have
several possible applications of the compressed image, and
since we do not know where exactly this image will be used,
it is difficult to quantify the quality of the compression. In
[23], [49], we consider the optimal choice of quality met-
ric most appropriate for a given problem. First, we use
a similar-based optimization approach to find the optimal
family of possible quality metrics (which turns out to be
LP-metrics), and then, we find p based on a specific prob-
lem.

B.9 Pattern Matching

In many real-life situations, we are interested in finding
the known pattern in a given image. For example, in the
analysis of geospatial data, we may be looking for certain
geophysical patterns indicative of, say, presence of water.
In [10], [12], [13], [14], [62], [78], a similar symmetry-based
optimality approach is used to develop optimal FFT-based
techniques for such matching.

B.10 Guaranteed Quality Estimation for Approximately
Given Systems

Our final example bring us back to the original problem
— of quality estimation for an approximately given system.
Symmetry-based approach can help in designing optimal
methods for such quality estimation for the situations when
the system is treated as a “black box”, a low-resolution ap-
proximation to the original system in which we are not al-
lowed to use the high-resolution details [24], [67]. In partic-
ular, in [24], [67], we describe modified Monte-Carlo tech-
niques which provide us with validated results even when
we do not know the exact values of the statistical charac-
teristics of the system — only intervals of possible values of
such characteristics.

IV. MULTIRESOLUTIONAL APPROACH TO REASONING
AND Locic: A BRIEF OVERVIEW

A. Reasoning and Logic: Successes and Problems

Multiresolutional approach can be applied not only to
the systems themselves, but also to the way we reason
about these systems, i.e., to the logic of human reasoning.
Specifically, in many areas (medicine, geophysics, military
decision-making, etc.), top quality experts make good deci-
sions, but they cannot handle all situations. It is therefore
desirable to incorporate their knowledge into a decision-
making computer system.

Experts describe their knowledge by statements
S1,...,5, (e.g., by if-then rules). Experts are often not
100% sure about these statements S;; this uncertainty is
described by the subjective probabilities p; (degrees of be-
lief, etc.) which experts assign to their statements. The
conclusion C' of an expert system normally depends on
several statements S;. For example, if we can deduce C
either from Sy and S3, or from S, then the validity of
C is equivalent to the validity of a Boolean combination
(S2 & S3) V S4. So, to estimate the reliability p(C) of the
conclusion, we must estimate the probability of Boolean

combinations. In this paper, we consider the simplest pos-
sible Boolean combinations are S; & S and S; V Ss.

In general, the probability p(S; & S2) of a Boolean com-
bination can take different values depending on whether Sy
and Ss are independent or correlated. So, to get the pre-
cise estimates of probabilities of all possible conclusions,
we must know not only the probabilities p(S;) of individ-
ual statements, but also the probabilities of all possible
Boolean combinations. To get all such probabilities, it
is sufficient to describe 2™ probabilities of the combina-
tions S{' & ... & St where &; € {+,—}, ST means S,
and S~ means —S. The only condition on these proba-
bilities is that their sum should add up to 1, so we need
to describe 2" — 1 different values. A typical knowledge
base may contain hundreds of statements; in this case, the
value 2™ — 1 is astronomically large. We cannot ask ex-
perts about all 2" such combinations, so in many cases,
we must estimate p(S; & Sz) or p(S; V S2) based only on
the values py = p(S1) and p» = p(S2). There exist many
possible “and”-operations fg : [0,1] x [0,1] — [0,1] which
transform the degrees p; and p, into an estimate fg (p1,p2)
for p(S1 & S). Similarly, there exist many “or”-operations
which transform degrees the p; and po into an estimate
fv(p1,p2) for p(S1V S2).

Many such operations have been successfully used in
fuzzy logic and intelligent control; see, e.g., [22], [56]. In
spite of the successes, there are still major problems with
these operations:

o First, these operations are not perfect. Indeed, some of
these operations, although very natural and useful at first
glance, seem to violate natural commonsense requirements;
we will give an example later).

o Second, there are so many different possible “and”- and
“or”-operations that it is difficult to meaningfully select one
of them. Any guidance for decreasing the class of possible
operations is very welcome.

B. Reasoning and Logic: Multiresolutional Approach

In our viewpoint, the above problems of the existing log-
ical methodologies come, to a large extent, from the fact
that researchers often combine different degrees of certainty
together. In reality, the degrees have a clear multiresolu-
tional character, and if we fully take this character into
consideration, we can make a large progress in solving the
above problems.

Let us explain why expert degrees of uncertainty are mul-
tiresolutional. An expert rarely provides us with numbers
describing his or her degrees of uncertainty. A more nat-
ural way for an expert to describe his/her degree of belief
in a certain statement is to use a word from natural lan-
guage such as “most probably” or “possibly”, and then we
translate this word into a number. There are only few such
words, and these words form the lowest-resolution level of
the uncertainty description. On this level, several differ-
ent statements with slightly different degrees of uncertainty
may be described by the same word and thus, lumped into
a single cluster. To avoid this lumping, we may ask an
expert to provide us with a more detailed description of



the expert’s degree, e.g., by using hedged combinations of
words like “slightly less certain but still reasonably cer-
tain”. The more details we ask, the more higher-resolution
description we get.

Another possibility to describe the expert’s degrees in
numerical terms is to ask the expert to describe his/her
degrees on a scale from, say, 0 to 10. We can start with
a low-resolution scale, e.g., with a scale consisting of only
two values “yes” and “no” that corresponds to the use of
the classical (two-valued) logic. As we increase the num-
ber of elements on the scale, we get a higher- and higher-
resolution description. Eventually, we get real numbers
describing uncertainty.

In both cases, we get numbers as a result, but these num-
bers appear as a result of a multiresolutional procedure. It
is therefore natural, when resolving the above problems — of
seeming inconsistency with common sense and of too many
options — to consider not only the resulting assignments of
numbers, but also the multiresolutional approximations to
these assignments. This consideration indeed helps in solv-
ing the above problems.

C. Multiresolutional Character of Uncertainty Reasoning
Resolves the Inconsistency Between Uncertainty Oper-
ations and Common Sense

Let us give one example of such inconsistency and show
how the multiresolutional character of human reasoning
can help with this particular example. It is known that
for given p; = p(S1) and p2 = p(S2), possible values of
p(S1 & S2) form an interval p = [p~,p*], where p~ =
max(p; + p2 — 1,0) and p™ = min(py,ps); and possible
values of p(S; V S2) form an interval p = [p~,p*], where
p~ = max(p1,p2) and pT = min(p; +ps, 1) (see, e.g., a sur-
vey [48] and references therein). So, in principle, we can use
such interval estimates and get an interval p(C) of possible
values of p(C). Sometimes, this idea leads to meaningful
estimates, but often, it leads to a useless p(C) = [0, 1] [47],
[57]. In such situations, it is reasonable, instead of using
the entire interval p, to select a point within this interval as
a reasonable estimate for p(S; & S») (or, correspondingly,
for p(Sy V S2)).

Since the only information we have, say, about the un-
known probability p(S; & S2) is that it belongs to the inter-
val [p~,pt], it is natural to select a midpoint of this interval
as the desired estimate:

£ 1 1 .
fe(pr,p2) € 5 - max(p +p2 —1,0) + 5 - min(pr, p2);
def 1 1.
p1,p2) = 2 -max(p1, p2) + B -min(p; + p2,1).

This midpoint selection is not only natural from a common
sense viewpoint; it also has a deeper justification. Namely,
in accordance of our above discussion, for n = 2 state-
ments S; and Ss, to describe the probabilities of all possible
Boolean combinations, we need to describe 22 = 4 probabil-
ities Iy = p(Sl & SQ), o = p(Sl & _|S2), I3 = p(—|51 & Sz),
and x4 = p(—S1 & —S2); these probabilities should add up

to 1: 21 + 22 + 23 + x4 = 1. Thus, each probability distri-
bution can be represented as a point (z1,...,24) in a 3-D
simplex § = {(z1,%2,23,24) |2; > 0& z1 + ... + 24 = 1}.
We know the values of p;1 = p(S1) = z1 + 22 and py =
p(S2) = z1 + z3, and we are interested in the values of
p(S1 & S2) = z1 and p(S1VS2) = x1 + 2 + x3. It is natural
to assume that a priori, all probability distributions (i.e.,
all points in a simplex S) are “equally possible”, i.e., that
there is a uniform distribution (“second-order probability”)
on this set of probability distributions. Then, as a natu-
ral estimate for the probability p(S; & S2) of S; & Sa, we
can take the conditional mathematical expectation of this
probability under the condition that the values p(S1) = p1
and p(S3) = po:

E(p(S1 & S2) | p(S1) = p1 & p(S2) = p2) =
P(zi|z1 + 22 = p1 &1 + 23 = pa).

The problem is that these operations are non-associative.
Why is this a problem? If we are interested in estimat-
ing the degree of belief in a conjunction of three state-
ments S; & Sz & S3, then we can either apply the “and”
operation to p; and ps and get an estimate fg (p1,p2) for
the probability of S; & S> and then, we apply the “and”
operation to this estimate and p3, and get an estimate
fe(fe(p1,p2), p3) for the probability of (S; & S3) & S3. Al-
ternatively, we can get start by combining S, and Ss,
and get an estimate fg(p1,fe(p2,p3)). Intuitively, we
would expect these two estimates to coincide, but, e.g.,
(0.4&0.6) & 0.8 =0.2& 0.8 = 0.1, while 0.4 & (0.6 & 0.8) =
0.4&0.5=0.2#0.1.

How can we solve this problem? Since we know that
the numerical values are only an approximation, we can
analyze how non-associative the above operations can be.
If the difference is below the natural resolution level, then,
from the practical point of view, the above operations are
as good as associative ones. The following is true:

Theorem [15], [38].

?

ml?x|f&(f&(a7 b),C) - f&(a7 f&(b7 C))' =

a,b,c

Ol o~

InbaDC{|fv(fv(a; b),C) - f\/(aaf\/(b: C))| =

20y

Each word describing a degree of belief is a “granule”
covering the entire sub-interval of values. Thus, non-
associativity is negligible if the corresponding realistic
“granular” degree of belief have granules of width > 1/9.
One can fit no more than 9 granules of such width in the
interval [0,1]. This may explain why humans are most
comfortable with < 9 items to choose from — the famous
“7 plus minus 2”7 law; see, e.g., [42], [43].

D. Multiresolutional Character of Uncertainty Reasoning
Helps to Drastically Narrow Down the Class of Possible
Logics

These results cover both the logics in which the set of
different degrees is an interval [0, 1], and more complex
logics.



D.1 [0,1]-Based Logics

For numerical operations, if we interpret the degree of
belief in a statement S as (proportional to) the number
of arguments in favor of S, then we arrive at a natural
choice of “and”- and “or” operations: fg(a,b) = a - b,
fv(a,b) = a+b, and fy(a,b) = b*. As one of the unex-
pected consequences, we get a surprising relation with the
entropy techniques, well known in probabilistic approach
to uncertainty [60].

A similar conclusion can be made if we require that the
operations be consistent with their multiresolutional struc-
ture: namely, for a discrete low-resolution level, we define
“derivatives” of these operations as finite differences, and
then require that the corresponding continuous limit oper-
ations have exactly the same expressions for the derivatives
[4].

The multiresolutional character of human reasoning also
explains why in logic, only unary and binary operations
are normally used: because although in principle, there
exist ternary operations on [0, 1] (in the limit case) which
cannot be represented as compositions of natural unary
and binary ones, but on each resolution level, when we
have only finitely many degrees, every operation can be
naturally represented as such a composition [51].

D.2 More General Logics

The need for more general logics comes from the fact that
just like experts are not sure about the statement S, they
are also not sure about their own degrees of belief d(S).
Thus, instead of a single number d(S), we can consider
several possible numbers d, with degrees da(d) describing
to what extent these numbers are adequate descriptions
of the original expert’s uncertainty. This “second-order”
approach has several successful applications. In principle,
it is possible to go further and consider the fact that the
degrees ds(d) are also not given precisely, so we seem to
need the third-, fourth-order etc, approaches. However, in
practice, such theoretically possible approaches turned out
to be not useful. This fact can be explained if we take the
multiresolutional character of reasoning into consideration:
o On the one hand, every “first-order” and “second-order”
logic, in which the set of degree of belief is an ordered set,
can be naturally described as a limit of an interval-related
multiresolutional procedure [27], [28], [45], [76].

e On the other hand, if degrees come from words, then the
third order is no longer necessary [30].

It is natural to select a continuous approach which best
reflects the multiresolutional character of human reason-
ing, i.e., in which there is a qualitative difference between
different pairs of degrees. A natural way to describe this
difference in continuous case is to use the approach of non-
standard analysis, with the actual infinitesimal elements
(= lexicographic ordering). The optimal selection of such
logics is described in [37], [54].

Conclusion

Interval mathematics is very helpful in the analysis of
multiresolutional systems.
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